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Abstract

Strategic market interaction is modelled as a two-stage game where
potential entrants choose capacities and active firms compete in prices
or quantities. Due to capital indivisibility, the capacity choice is made
from a finite grid. In either strategic setting, the equilibrium of the
game depends on the size of total demand at a price equal to the
minimum average cost. With a sufficiently large market, the long-run
competitive price emerges at a subgame-perfect equilibrium of either
game. Failing the large market condition, equilibrium outcomes are
quite different in the two games, and neither game reproduces the
competitive equilibrium.
JEL classification: D43, D44, L13.
Keywords: Entry, Bertrand-Edgeworth, Cournot, capacity indi-

visibility.

1 Introduction1

Since Kreps and Scheinkman (1983) (henceforth, KS) there has been active
research on Bertrand-Edgeworth competition with endogenous capacity de-
termination. KS have shown that, under the efficient rationing rule, the
Cournot outcome emerges at a subgame-perfect equilibrium of a duopolistic
two-stage capacity and price game. This result may not hold, though, under

1Much of this work was made during my visit to the School of Social Sciences, University
of Manchester (UK). I would like to thank partecipants to the Economic Theory Workshop
for valuable comments. I am especially grateful to Paul Madden for his support and very
helpful comments on earlier drafts of this paper. Financial support from M.I.U.R. and
P.A.R. is gratefully acknowledged.
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alternative rationing rules, since a mixed strategy equilibrium of the price
subgame can arise on the equilibrium path (Davidson and Deneckere, 1986).
More recently, Madden (1998) has established that a uniformly elastic de-
mand curve is sufficient for the Cournot outcome under oligopoly, regardless
of the rationing rule. Boccard and Wauthy (2000 and 2004) have shown that
the Cournot result extends to oligopoly under KS’s assumption on cost and
the efficient rationing rule, although this need not be so if, in the short run,
the firms can produce above “capacity” at a finite extra-cost.

Throughout this literature the cost of capacity has been represented as a
continuous and convex function. It follows that identical firms will choose a
positive capacity at an equilibrium of the capacity and price game.2 Casual
observation seems to suggest, though, that there are markets where some
potential entrants refrain from entering, though equally competitive as ac-
tive firms. One natural way to account for such a feature is by introducing
nonconvexities in the long-run cost function. In this connection, we take the
view that, because of capital indivisibility, the firms are facing a discrete
capacity choice set. This results in discontinuities and nonconvexities in the
long-run cost function and substantial scale economies. As for the short
run, average variable cost is taken as constant up to full capacity utiliza-
tion, as is customary in the literature on Bertrand-Edgeworth competition.
Based on these assumptions, we analyze a capacity and price game under
the efficient rationing rule. At a subgame-perfect equilibrium of our capacity
and price game, active firms are less than (a large number of) potential en-
trants. Different types of equilibrium arise depending on parameter values.
In the version of the model developed in the main text, the characterization
of equilibria is made under the convenient assumption - to be removed in
Appendix B - that total demand at a price equal to the minimum average
cost is an integer number. It is shown that the equilibrium level of total
capacity equals the competitive one - namely, the quantity demanded at a
price equal to the minimum average cost -, with pricing behavior on the
equilibrium path depending on how large is the market at the competitive
equilibrium: with a market large enough compared to the firm minimum ef-
ficient scale, the competitive price - the minimum average cost - is charged,
otherwise the price subgame has a mixed strategy equilibrium.

The paper also analyzes a capacity and quantity game among Cournot
competitors. Similar to price competition, competition among Cournot
quantity setters is found to exactly reproduce the competitive equilibrium
so long as total demand at a price equal to the minimum average cost is suf-

2See below, p. 13.
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ficiently large; if not, the firms produce below capacity on the equilibrium
path and the equilibrium level of total capacity may exceed, even signifi-
cantly, the competitive one.

The above results shed further light on the relationship between the out-
comes of price competition, Cournot quantity competition, and the compet-
itive equilibrium. It is a well-established property of price-game equilibrium
under given capacities that, with the average variable cost constant up to
capacity, the (short-run) market-clearing price emerges if each firm capacity
is sufficiently small compared to industry capacity (see, for example, Vives,
1986). This result is now extended to the long run: price competition with
endogenous capacity determination will exactly yield the long-run compet-
itive price so long as, at the long-run competitive equilibrium, the market
size is sufficiently large compared to the firm minimum efficient size. The
analogous result obtained for the capacity and quantity game is in con-
trast with Novshek’s (1980) model of Cournot competition with entry: in
that model, which is based on a smooth U-shaped average cost curve, the
equilibrium price in the entry and quantity game tends asymptotically to
the minimum average cost as the average cost minimizing output decreases
relative to total demand.

Finally, our model shows how price competition need not yield the
Cournot outcome, even under the efficient rationing rule: if the market
is not sufficiently large at the long-run competitive equilibrium, then on the
equilibrium path of the capacity and price game active firms play a mixed-
strategy equilibrium of the price subgame. This possibility arises because of
the discontinuities in the long-run cost function: if the cost function where
everywhere continuous and convex, then, at any capacity configuration in-
volving a mixed strategy equilibrium for the price subgame, it would pay the
largest firm to reduce its capacity, which would reduce cost without reducing
equilibrium revenue.

The paper is organized as follows. The basic assumptions of the model
are laid down in Section 2. Section 3 analyzes the capacity and price game,
providing full equilibrium characterization according to parameter values.
Section 4 similarly analyzes a capacity and quantity game among Cournot
competitors. Section 5 discusses the role of capacity indivisibility, also show-
ing how Bertrand-Edgeworth competition would always yield the Cournot
outcome under a (weakly) convex cost function. Section 6 briefly concludes.
Proofs of some of the propositions in the text are located in Appendix A. Ap-
pendix B generalizes determination of equilibria of our capacity and market
games when, as is generally the case, the quantity demanded at the min-
imum average cost is not an integer number. Appendix C deals with a
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simultaneous capacity and quantity game among Cournot competitors.

2 The model and basic assumptions

We consider the market of a homogeneous product. D(p) and P (Q) denote
the demand and the inverse demand function, respectively, p being the price
and Q the total quantity. We assume a linear demand curve, P (Q) = a−bQ
for Q ≤ a/b, where a, b > 0. At stage 1 there is a set Z = {1, ..., z} of
identical potential entrants that make capacity decisions, while active firms
compete in the output market at stage 2. To be active, firm i must install
some positive capacity qi at stage 1. Capacity is chosen from a finite grid,
due to indivisibility of capital and finiteness of available technologies. Let
F+ = {f} with f = 0, 1, 2, ..., and R+ be the set of nonnegative reals.
To keep the analysis most simple, availability of a single technology (α)
is assumed throughout, except that a clue will also be given as to how the
analysis could be generalized under a plurality of technologies. The capacity
choice set faced by each firm is taken to be C(α) = αF+, where α ∈ R+.
The cost of capacity per unit of output is constant at r under full capacity
utilization. For notational convenience we let α = 1, that is, we set equal to
1 the minimum positive capacity that is technically feasible with technology
α; consequently, the firm capacity choice set is F+.

Given qi, firm i’s cost is thus c(qi) = rqi for qi ≤ qi (we set equal to 0
the (constant) unit variable cost), while no output can be produced above
capacity (equivalently, one can assume c(qi) = ∞ for qi > qi). Clearly the
long-run cost function, C(qi) - showing the minimum cost at any output - is
C(qi) = rqi, with qi = [qi, qi+1)∩F+. Thus the C(qi) curve is horizontal at
any qi ∈ (f, f+1], while jumping up by r units at any f . Clearly C(qi) is not
everywhere (weakly) convex.3 The long-run average cost curve, AC(qi) =
r qiqi , slopes downwards for qi ∈ (f, f + 1] (scale economies due to capacity
indivisibility), equals r for any qi ∈ F+ (constant returns at full capacity),
and jumps up when qi increases slightly above f (the jump converging to
zero as f becomes larger and larger). Clearly, min argminqi AC(qi) = 1: the
lowest average-cost minimizing output is the minimum capacity allowed for
by technology.

A (by assumption) deterministic capacity choice is made by each i ∈ Z
to maximize the expectation of profits πi = piqi−rqi. Henceforth, we denote

3Consider any convex combination of f and f + 1, with f ∈ F+ and weights k and
1− k: producing this output costs C(kf + (1− k)(f + 1)) = r(f + 1) = rf + r, which is
greater than kC(f) + (1− k)C(f + 1) = krf + (1− k)r(f + 1)=rf + r − kr.
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by Q = Fz+ = {q} the space of all feasible capacity configurations, where
q = (q1, ..., qz) is a vector of capacities, one for each potential entrant, which
might result from stage-1 capacity decisions. Furthermore, let q−i ∈ Fz−1+

denote the capacity configuration of i’s rivals, Q = q total capacity, A = {i |
qi > 0} and n = #A the set and number of active firms at q, respectively,
and g any firm with the largest capacity. At stage 2 every i ∈ A knows q.

We would like to compare the outcome of strategic market interac-
tion through prices or quantities with the long-run competitive equilibrium,
namely, the equilibrium of the industry when price-taking potential entrants
make simultaneous capacity and quantity decisions. Unfortunately, the com-
petitive equilibrium may not exist. (For nonexistence under U-shaped av-
erage cost, see Novshek, 1980, pp. 473-4, and Mas-Colell, Whinston, and
Green, 1995, pp. 337-8). In fact, total supply S(p) is indefinitely large
at p > r, and zero at p < r. If at zero profits the firms are indifferent
between entering or not, then S(r) ∈ F+: at p = r the firms choose any
feasible capacity and supply it entirely. Thus it can only be S(r) = D(r)
if D(r) ∈ F+.4 In the text we conveniently avoid the nonexistence prob-
lem by restricting ourselves to demand curves such that a−r

b ∈ F+; thus
the “competitive” price (p∗) and output (Q∗) are, respectively, p∗ = r and
Q∗ = D(r). Furthermore, with D(r) ∈ F+ equilibria of our capacity and
market games are much easier to characterize. (Equilibrium characterization
for the D(r) /∈ F+ case is carried out in Appendix B.)

We denote by Q∗ = {q∗} the set of all capacity configurations with D(r)
active firms, each with unitary capacity, and by Q∗∗ = {q∗∗} the set of
all capacity configurations with D(r) + 1 active firms, each with unitary
capacity. More formally, we have the following definition.

Definition 1. Each q∗ is such that n∗ = Q
∗
= D(r), and each q∗∗ is

such that n∗∗ = Q∗∗ = D(r) + 1.
Hence Q∗ is the set of the least concentrated capacity configurations

consistent with the long-run competitive capacity. By assumption, there are
sufficiently many potential entrants for q∗∗ to be feasible (z > n∗∗).

Further notation is now introduced. At any q, let pw(q) and Qw(q) be,
respectively, the market-clearing price and total output with price-taking
firms: pw(q) = P (Q) and Qw(q) = Q if Q ≤ D(0), while pw(q) = 0 and
Qw(q) = D(0) if Q ≥ D(0). Henceforth πwi (q) = (pw(q) − r)qi denotes i’s
market-clearing profit at q and πwi (qi, q−i) = (p

w(qi, q−i) − r)qi denotes i’s
market-clearing profit as a function of qi, given q−i. If qi were continuous,
then concavity of πwi (qi, q−i) would follow straightforwardly fromD

00(p) ≤ 0;
4Even so, some coordination is needed for the firms to exactly supply D(r).
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in our context, ∂2πwi (qi, q−i)/∂q
2
i = −2b when qi +

P
j 6=i qj < D(0).

3 The capacity and price game

3.1 The price subgame

We characterize the equilibrium of the price subgame at any q. Let p−i be
the prices of i’s rivals and di(pi, p−i, q) the demand facing i at prices (pi, p−i).
The firms produce on demand, hence firm i’s output is qi(pi, p−i, q) =
min {di(pi, p−i, q), qi}. Under efficient rationing, di(pi, p−i, q) = max{0,D(pi)−P
j 6=i qj} when pi > pj for any j 6= i ∈ A. Let eqi = eq(Pj 6=i qj) be such thath

∂[P (qi +
P
j 6=i qj)qi]/∂qi

i
qi=eqi = 0 and let eΠi = P (eqi +Pj 6=i qj)eqi. Note

that, so long as eqi ≤ qi, eqi and eΠi are, respectively, firm i’s (short-run)
Cournot best response and revenue in the face of an output of

P
j 6=i qj by

its rivals. With D00(p) ≤ 0, eq0(·) < 0 for
P
j 6=i qj < D(0). We also letepi = ep(Pj 6=i qj) be such that

h
d[pi(D(pi)−

P
j 6=i qj)]/dpi

i
pi=epi = 0. Note

that epi is firm i’s best price response to strategy profile p−i so long asepi ≥ P (Q) and epi ≥ pj for any j 6= i. It is 0 < epi ≤ P (
P
j 6=i qj); fur-

thermore, maxi pi = epg because ep0(·) < 0 for
P
j 6=i qj < D(0). Clearly,epi = P (eqi +Pj 6=i qj) and hence eΠi = epieqi. In our setting,

eqi =
a− bPj 6=i qj

2b
, (1)

epi =
a− bPj 6=i qj

2
. (2)

Let πi(q) and Πi(q) be, respectively, i’s expected profit and revenue at an
equilibrium of the price subgame. The following result is easily established.

Lemma 1. For any i ∈ A, πi(q) ≥ πwi (q).

Proof. The claim is obvious when pw(q) = 0. With pw(q) = P (Q),
by charging pw(q) firm i guarantees itself full capacity utilization, hence a
profit of πwi (q), regardless of p−i.

We now see that, with Q 6= D(0), the market-clearing price obtains at
an equilibrium of the price subgame provided individual capacities are small
compared to industry capacity (for the symmetric case, see Vives, 1986).

Lemma 2. A small qg/Q is necessary and sufficient for: (i) all prices
equal to zero to be an equilibrium of the price subgame when Q > D(0);
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(ii) all prices equal to P (Q) to be the equilibrium of the price subgame when
Q < D(0).

Proof. (i) All prices equal to zero is an equilibrium if and only ifP
j 6=g qj ≥ D(0) or, equivalently, qg/Q ≤ 1 − D(0)/Q: for any D(0) and

Q ≥ 2, this condition will hold if qg/Q is sufficiently small.5
(ii) From concavity of pi(D(pi) −

P
j 6=i qj), each firm charging P (Q) is

an equilibrium if and only if·
∂(pi(D(pi)−

P
j 6=i qj)

∂pi

¸
pi=P (Q)

= qi + P (Q)
£
D0(p)

¤
p=P (Q)

≤ 0 for all i ∈ A,
(3)

that is, if and only if qg ≤ −P (Q) [D0(p)]p=P (Q). This can in turn be written
as

qg/Q ≤ ηp=P (Q), (4)

where ηp=P (Q) denotes absolute elasticity ofD(p) at a price of P (Q). Unique-
ness of equilibrium can be established similarly as in KS.

Note, incidentally, that, because of concavity of pi(D(pi)−
P
j 6=i qj) and

since ep 0(·) < 0, ineq. (3) amounts to
epg ≤ P (Q). (5)

where epg = ep(Pj 6=g qj). A pure-strategy equilibrium (p.s.e.) does not exist
when Q ≥ D(0) and Pj 6=g qj < D(0) or when Q < D(0) and epg > P (Q).
Then a mixed-strategy equilibrium (m.s.e.) exists; in fact, as we now see, all
the sufficient conditions of Theorem 5 of Dasgupta and Maskin (1986) for
equilibrium existence are satisfied. Let Πi(pi, p−i; q) denote firm i’s expected
revenue in terms of (pi, p−i), given q. First, for any i ∈ A, Πi(pi, p−i; q) is
bounded and continuous in pi, except at (pi, p−i) such that pi = pj for
some j 6= i and 0 < D(pi) −

P
j:pj<pi

qj <
P
j 6=i:pj=pi qj + qi, where Πi(·)

is weakly lower semi-continuous (at any such (pi, p−i), a slight reduction in
pi results in an upward jump in Πi(·)). Second,

P
i∈AΠi(·) is continuous,

hence upper semicontinuous, in (pi, p−i). As to the properties of m.s.e., since
KS it has been known that, under duopoly, expected equilibrium revenue
for the largest firm equals the revenue of the Stackelberg follower when

5Remaining equilibria have sufficiently many firms charging 0 so that
P

j 6=i:pj=0 qj ≥
D(0) for any i : pi = 0.
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the rival supplies its entire capacity. While this property was subsequently
extended to symmetric oligopoly (Vives, 1986), the following lemma (based
on a claim by Boccard and Wauthy, 2000, subsequently further developed
by De Francesco, 2003) establishes its generality.

Lemma 3. At any q for which no p.s.e. exists, firm g’s expected
equilibrium revenue is Πg(q) = eΠg = epgeqg, where eqg < qg.

Proof. See De Francesco (2003).

Remark 1. Let πwi (qi = eqi, q−i) ≡ πwi (eqi, q−i), where πwi (eqi, q−i) =
(P (eqi+Pj 6=i qj)− r)eqi. Firm g’s expected profit at a m.s.e., πg(q) = epgeqg−
rqg, can then be written πg(q) = πwg (eqg, q−g)− r(qg − eqg).
3.1.1 Solving the entire game

Looking for subgame perfect equilibria of the capacity and price game, we
begin ruling out any q /∈ Q∗.

Lemma 4. Capacity configurations outside Q∗ cannot occur at an equi-
librium of the capacity and price game.

Proof. See Appendix A.

Now we see that any capacity configuration q∗ is part of an equilibrium,
with pricing on the equilibrium path depending on the size of D(r).

Proposition 1 At an equilibrium of the capacity and price game: (i) if
b ≤ r (that is, D(r) ≥ (a− r)/r), then the capacity configuration is any q∗
and the firms are charging the competitive price r on the equilibrium path;
(ii) if b > r (that is, D(r) < (a − r)/r), then the capacity configuration is
any q∗ and the firms randomize over prices on the equilibrium path.

Proof. (i) Coherently with our notation, we let ep∗i = ep(Pj 6=i q
∗
j ) andep∗∗i = ep(Pj 6=i q

∗∗
j ). By substitution into eq. (2), ep∗i = (r+b)/2, hence ep∗i ≤ r

if and only if b ≤ r. This being so, a p.s.e. for the price subgame obtaines
at q∗ and πi(q

∗) = 0. Any i ∈ A∗ 6 has made a best capacity response to
q∗−i, no matter whether ep∗i T P (Q∗ + 1). If ep∗i > P (Q∗ + 1), then a m.s.e.
obtains when i deviates to qi ≥ 2, resulting in πi(qi, q

∗
−i) = ep∗i eq∗i − rqi. This

is negative because ep∗i ≤ r and 1 ≤ eq∗i < 2 ≤ qi. If ep∗i ≤ P (Q∗ + 1), then
deviating to qi = 2 leads to a p.s.e., hence to a loss. A fortiori losses would
result from deviating to any qi > 2 entailing a p.s.e.. If choosing qi > 2

6Consistent with our terminology, A∗ = {i | q∗i = 1}.
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leading to a m.s.e., then πi(qi, q
∗
−i) = ep∗i eq∗i −rqi < 0 since ep∗i ≤ P (Q∗+1) < r

and eq∗i < qi. Finally, at q
∗ any firm u /∈ A∗ has made a best response.

Suppose u deviate to qu = 1. The resulting configuration (qu = 1, q∗−u)
can be denoted by q∗∗: thus πu(qu = 1, q∗−u) = πi(q

∗∗), πi(q∗∗) being the
equilibrium payoff of any i ∈ A∗∗ at q∗∗. Obviously πi(q

∗∗) < 0 if a p.s.e.
obtains at q∗∗. If a m.s.e. obtains, then πi(q∗∗) = ep∗∗i eq∗∗i − r; this is negative
because ep∗∗i = r/2 and eq∗∗i < 1. Things would be even worse for u if entering
with qu > 1.

(ii) A m.s.e. obtains at q∗, hence πi(q∗) = ep∗i eq∗i −r > 0. Every i ∈ A∗ has
replied optimally because deviating to qi > 1 raises cost without affecting
subgame equilibrium (hence expected revenue). Any u /∈ A∗ has also made
a best response: if deviating to qu = 1, πu(qu, q

∗−u) = πi(q
∗∗) < 0 at the

m.s.e. of the resulting subgame.

The symmetric m.s.e. obtaining at q∗ when b > r is easily computable
(see Vives, 1999, pp. 130-1). There is an atomless equilibrium distribution,
φ(p), over a compact support S = [p∗, p∗]; since expected revenue is eΠ∗i =ep∗i eq∗i , we have p∗ = ep∗i and p∗ = eΠ∗i . Finally, eΠ∗i = p[φn−1(a−pb − (n∗ − 1)) +
(1− φn−1)] for any p ∈ S, hence φ(p) = n∗−1

r
b(eΠ∗i−p)

p(a−p−bn∗) .
To summarize: at any solution of the game, total capacity equals the

long-run competitive outputD(r), each active firm has the minimum feasible
size, and the competitive price emerges on the equilibrium path so long as
D(r) ≥ (a−r)/r, or else the firms randomize over prices. Note, incidentally,
that what really matters is the size of D(r) relative to the firm minimum
efficient size (α), which we normalized to 1.

4 The capacity and quantity game

We now determine Cournot equilibrium with entry. Cournot competitors are
simultaneous quantity setters that take the price equal to the demand price
of the total output brought to the market. In a long-run setting, Cournot
competitors are simultaneous capacity setters. Under KS’s assumption of
perfect capacity divisibility, capacity is obviously set equal to the planned
output. However, with indivisibility, equilibrium output might be less than
capacity.

We keep the two-stage setup: potential entrants choose capacity and
active firms subsequently choose output. A static setup - where the firms
choose simultaneously a capacity and quantity pair - is perhaps more akin
to the normal way of portraying long-run Cournot competition. Yet, the
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two-stage setup is not fundamentally misleading: as will be shown in Ap-
pendix C, any (subgame-perfect) equilibrium outcome of the two-stage game
constitutes an equilibrium of the static capacity and quantity game.

As can easily be checked, when the equilibrium of the quantity subgame
at q involves an internal maximum for each of the n active firms, then the
equilibrium is symmetric, with qi = a

b(n+1) and Πi =
a2

b(n+1)2
. Taking stock

of this, we now look for equilibria of the capacity and quantity game. We
preliminarily dispose of any q such that qg > 1.

Lemma 5. No q where qg > 1 can occur at an equilibrium of the capacity
and quantity game.

Proof. See Appendix A.

We can now provide a full characterization of equilibria for the capacity
and quantity game.

Proposition 2 At an equilibrium of the capacity and quantity game: (i)
if b ≤ r, then the capacity configuration is any q∗ and the firms produce
their capacity on the equilibrium path, which results in the competitive price
r; (ii.a) if b > r > a2b

(a+2b−r)2 , then the capacity configuration is any q
∗

and the firms produce below capacity on the equilibrium path; (ii.b) if b >
a2b

(a+2b−r)2 ≥ r, then the capacity configuration is any q§ such that n§ = Q
§

and n§ ≤ −1 + a
√
br
br < n§ + 1, and the firms produce below capacity on the

equilibrium path.

Proof. (i) Since b ≤ r, ∂[qiP (qi +
P
j 6=i q

∗
j)]/∂qi ≥ 0 at qi = 1 : at q∗,

the firms produce their capacity at the equilibrium of the quantity subgame.
Any i ∈ A∗ has made a best capacity response. To this effect, note thateq∗i = b+r

2b , where eq∗i is i’s unconstrained (short-run) best quantity response
to an output of

P
j 6=i q

∗
j . Let k ∈ F : k − 1 < eq∗i ≤ k. As one can check,

if i deviates to qi = k, then, at the subgame equilibrium, qi = eq∗i and
qj = q∗j = 1 for any j 6= i ∈ A∗; thus Q > D(r) and p = P (Q) < r. With
k ≥ 3, deviating to any qi ∈ {2, ..., k − 1} results in qi = qi and qj = q∗j = 1
for any j 6= i ∈ A∗: again Q > D(r). A loss would also be faced by any
u /∈ A∗ if entering. Deviating to qu = 1 results in a configuration q∗∗. If
b ≤ r/2, then a boundary solution obtains for the quantity subgame, so that
Q = Q

∗
+ 1 > D(r). As for a deviation to qu > 1 one can adapt a previous

argument to see that Q > D(r). If r/2 < b ≤ r, an internal solution obtains
if deviating to qu ≥ 1: thus total output is n∗∗

n∗∗+1
a
b =

a(a+b−r)
b(a+2b−r) > D(r).
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As to configurations outsideQ∗, in view of Lemma 5 we just need to focus
on any q : n = Q 6= D(r). Any q : n = Q < D(r) is immediately dismissed
since any inactive firm would profit from entering with qu = 1.

7 As to any
q : n = Q = D(r) + l (with l ≥ 1), note that an internal solution obtains
for the quantity subgame if b(1 + l) > r. (The case of a boundary solution
is trivial.) Equilibrium revenue is then a2

b(n+1)2
= a2b

[a+b(1+l)−r]2 < b ≤ r: any
active firm makes losses.

(ii.a) With b > r, an internal solution for the quantity subgame obtains
at q∗ and πi(q

∗) > 0. A best response has been made at stage 1 by any
i ∈ A∗: deviating to qi > 1 would raise cost without affecting subgame
equilibrium. As to any u /∈ A∗, entering would afford revenue Πi(q∗∗) =
a2b/(a + 2b − r)2 < r, no matter qu. Other configurations where active
firms have one unit of capacity are easily dismissed: we have just seen that
πi(q

∗∗) < 0; then, a fortiori πi(q) < 0 for any q : n = Q > D(r) + 1.
(ii.b) Note that n§ is the largest integer solution of a2

b(n+1)2 ≥ r. Thus, for
any u /∈ A§, staying out is the best response at q§. Any i ∈ A§ has also made
a best response because a capacity increase would just raise costs. Other qs
where active firms have one unit of capacity are easily dismissed.

By comparing Propositions 1 and 2 we then see that the outcomes of
Cournot and price competition do coincide so long as D(r) is sufficiently
large, the competitive price then emerging in either setting: on the equi-
librium path, there will be D(r) active firms, each producing its unitary
capacity. With D(r) not that large, the two settings yield quite different
outcomes. On the equilibrium path of the capacity and price game there are
still D(r) active firms, each with unitary capacity, but they are now playing
a m.s.e. of the price subgame. Under Cournot competition, active firms are
producing less than their unitary capacity on the equilibrium path; quite
importantly, there may be much more than D(r) active firms (as illustrated
by the last example below), hence the level of total capacity may exceed
competitive capacity.

Examples. 1. a = 15, b = 1, and r = 2. At an equilibrium of either
game, n = Q = D(r) = 13, and the competitive price r obtains.

2. a = 10.5, b = 3, and r = 1.5. At an equilibrium of either game,
n = Q = D(r) = 3, but stage-2 equilibrium variables differ. In the price sub-

game, Πi = eΠ∗i = 1.6875, and φ(p) = 2

q
3(1.6875−p)
p(1.5−p) over S = [1.6875, 2.25];

in the quantity subgame, qi = .875, p = 2.625, and Πi = 2.296875.

7With Q = Q
∗ − 1, entry would result in zero profits. Any such q is disposed of if, at

zero profit, entering is strictly preferred to not entering.
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3. a = 17, b = 2, and r = 1. In the capacity and price game, n = Q =

D(r) = 8, Πi = eΠ∗i = 1.125, and φ(p) = 7

q
2(1.125−p)
p(1−p) over S = [1.125, 1.5] .

Capacity is much larger at a Cournot equilibrium: n = Q = n§ = 11,
qi = 17/24, p = 17/12, and Πi = 289/288. ¦

5 The role of capacity indivisibility

With nonconvexities in long-run costs, “excess capacity” - namely, active
firms producing less than the average cost minimizing output - is a common
feature of models of imperfect competition with entry (in the Cournot set-
ting, see Novshek, 1980). On the other hand, the possibility of Cournot and
Bertrand-Edgeworth competition exactly yielding the (long-run) competi-
tive price and total output constitutes one distinctive feature of our model.
This result relies on the discontinuities in the cost function. Suppose, as
before, a unique technology to be available, but now let capacity be a con-
tinuous choice variable: then the long-run cost function would be c(qi) = rqi
for any qi ∈ R+. Consider any q such that Q = D(r) and p = P (Q) = r at
an equilibrium of both the price and quantity subgame. Clearly, any active
firm has not made a best capacity response: by reducing capacity the new
market-clearing price would be raised above r, thus allowing for positive
profits at the price or quantity subgame. In contrast, there is no such op-
portunity in our model because, at the candidate equilibrium, the firms are
endowed with the minimum capacity that is technically feasible.

Although our model has been developed assuming availability of a single
technology, one might allow for a plurality of technologies and still end up
with the long-run competitive outcome at an equilibrium of either game. To
see this in the easiest way, let another technology, β, be also available, be-
sides α. Similar to α, if choosing β the capacity choice set will be C(β) = βF+
and average cost will be constant at r0 under full capacity utilization. We
take β to be a “less mechanized” technology, allowing for a lower minimum
capacity (β < α = 1). Furthermore, we let r0β < r < r0: the average-cost
minimizing technology is α, but β is cheaper at a sufficiently low output.
It might easily be verified that, at the long-run competitive equilibrium,
technology α is the one actually chosen, while price and capacity are p∗ = r
and Q

∗
= D(r), respectively. Now, so long as b ≤ r, this same outcome may

still arise at an equilibrium of either game, with each active firm endowed
with one unit of capacity. On reflection, this is actually the case when, at
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q∗,8 it does not pay any i ∈ A∗ to deviate to technology β and install any
capacity qi ∈ β[1, ..., k] < 1, where k < 1/β < k + 1.9 Note that, with price
competition as well as Cournot competition, at the resulting subgame the
deviant will sell qi at the new market-clearing price, r+b(1−qi). Then such
a move will lead to losses if r + b(1 − qi) < r0. It follows that deviating to
any feasible qi < 1 is unprofitable so long as β > [b− (r0 − r)]/b.

Finally, it must be emphasized that capacity indivisibility is crucial for
the possibility of Bertrand-Edgeworth competition not yielding the Cournot
outcome, in contrast to KS. This can be seen by showing that, with (weak)
convexity in costs, the result established by KS for a duopoly will always
hold. Let D00(p) ≤ 0 and c00(qi) ≥ 0. Most importantly, no q involving a
m.s.e. of the price subgame can arise at an equilibrium of the capacity and
price game. Indeed, at any such q, πg(q) = πwg (eqg, q−g) − [c(qg) − c(eqg)],
where eqg < qg. Then g has not made a best capacity response: by Lemma
1, with capacity eqg it would earn at least πwg (eqg, q−g). Furthermore, unlike
under capacity indivisibility, profits are positive at an equilibrium of the
entire game, no matter the number of firms: if not, any active firm would
profit from deviating to a lower capacity and then charging the new market-
clearing price. Thus the equilibrium price is higher than unit cost. It follows
that all firms are active at an equilibrium of the entire game: if not, any
inactive firm would profit from entering with a sufficiently small capacity
and then charging the market-clearing price.

The equilibrium of the (Cournot) capacity and quantity game is a profile
of capacity-quantity decisions - call it qc - such that

d

dqi

P (qi +X
j 6=i
qj)qi

 = c0(qi) for all i ∈ Z. (6)

Any Cournot equilibrium is symmetric; furthermore, provided P (0) > c0(0),
equilibrium existence is guaranteed by (weak) concavity of demand and
(weak) cost convexity. Of course, the left-hand side of (6) is positive at
the Cournot equilibrium, hence eqci > qci , where eqci is firm i’s (short-run) un-
constrained best response in the face of a total output of

P
j 6=i qj = (z−1)qci :

on the equilibrium path, qci = qi
c for any i ∈ Z and p = P (Q

c
).

We can now establish the Cournot outcome of the capacity and price
game (see also Boccard and Wauthy, 2000 and 2004).

8As before, q∗ is such that q∗i = α = 1 for each i ∈ A∗ and n∗ = D(r).
9 Installing any qi ≥ 1 while deviating to β is immediately discarded.
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Proposition 3 At an equilibrium of the capacity and price game, the ca-
pacity configuration is qc and all firms charge P (Q

c
) on the equilibrium path.

Proof. Among configurations involving a p.s.e. for the price subgame,
consider any q such that d[P (qi +

P
j 6=i qj)qi]/dqi > c0(qi) for some firm

i. Any such i has not made a best capacity response: by marginally
increasing qi and then charging the market-clearing price, it would raise
revenues more than cost. A similar argument disposes of any q where
d[P (qi +

P
j 6=i qj)qi]/dqi < c0(qi) for some i. To check that qc is instead

an equilibrium, let i deviate to qi > qci . If qi ≤ eqci , then, by concav-
ity of P (qi +

P
j 6=i qj)qi − c(qi), i’s profit would be less than at qc at the

p.s.e. of the price subgame. Prospects are even worse if qi > eqci : a m.s.e.
would then obtain for the price subgame, with i’s expected revenue fixed at
P (eqci +Pj 6=i q

c
j)eqci , no matter qi. Next consider a deviation to qi < qci . As qi

decreases, epj increases at rate −1/[2D0(·)+P (·)D00(·)] for any j 6= i, whereas
the market-clearing price P (qi+

P
j 6=i q

c
j) increases at the faster rate −P 0(·).

Therefore, epj < P (qi +Pj 6=i q
c
j) for any j 6= i: the price subgame has still

a p.s.e. and we can use the previous argument to conclude that i’s profits
decrease.

6 Conclusion

The paper has analyzed entry and strategic market interaction through
prices or quantities as a two-stage game where many potential entrants are
facing a discrete capacity choice set at stage 1. Whether the firms are price
setters or Cournot quantity setters, the equilibrium outcome has been seen
to depend on the market size at the long-run competitive equilibrium: with
a sufficiently large market, the competitive price emerges in either game;
failing the large market condition, the competitive outcome does not arise
and equilibrium outcomes are quite different in the two strategic settings.

Our two main results - the possibility of either game yielding exactly
the competitive outcome and the possibility of the capacity and price game
not yielding the Cournot outcome - rely on the discontinuities in the cost
function, which in turn have been derived from capital indivisibility under
the simplifying assumption of availability of a single technology. Check-
ing how these results should be qualified assuming a plurality of available
technologies - which would mitigate to some extent the degree of capacity
indivisibility - is a task that we leave to future research.
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APPENDIX
A. Remaining proofs

Proof of Lemma 4. Let q†i = argmaxqiπ
w
i (qi, q−i) when qi is viewed

as a continuous variable: q†i = 0.5[D(r) −Pj 6=i qj ] when
P
j 6=i qj ≤ D(r).

One can also check that

πwi (qi, q−i) = πwi (q
†
i , q−i)− b

³
qi − q†i

´2
. (7)

Now, let Q \ Q∗ denote the complementary set of Q∗ in the space Q of
capacity configurations. It is usefully partitioned into five subsets.

(a) {q | Q < Q∗}. At any such q, any u /∈ A has not replied optimally, for
it would profit from deviating to qu = 1 and then charging pu = P (Q+1).

10

(b) {q | Q = Q
∗
; qg > 1}. No matter whether the price subgame has a

p.s.e. or a m.s.e. at q , firm g would benefit from deviating to qg − 1. In
the former case this is immediate: πi(q) = 0 for any i ∈ A, whereas g would
profit from deviating to qg−1 and then charging P (Q∗−1) > r. In the latter
case, epg > r and πg(q) = eΠg − rqg. Then there are two possibilities: eitherepg ≥ P (Q∗−1) or epg < P (Q∗−1). If epg ≥ P (Q∗−1), then deviating to qg−1
would raise g’s expected profit at least to eΠg − r(qg − 1): since rivals can
produce

P
j 6=g qj at most, firm g will sell at least eqg = D(epg) −Pj 6=g qj ≤

qg − 1 when charging epg. If epg < P (Q
∗ − 1), then qg − 1 < eqg < qg. The

capacity reduction is then conveniently decomposed into two virtual steps:
a reduction from qg to eqg and then from eqg to qg − 1. By Lemma 1, it
suffices to prove that g’s profit would rise if, at each step, g were to charge
the (short-run) market-clearing price. Assuming so, then g’s profit would
rise to πwg (eqg, q−g) at the first step. At the second step, g’s profit would
become πwg (qg − 1, q−g): by eq. (7), this is larger than πwg (eqg, q−g) because
q†g ≤ qg − 1 < qg at any q : n < Q = Q∗.

(c) {q | Q ≥ Q∗+1; epg ≤ P (Q)}. Any such q has a p.s.e., hence πi(q) < 0
for any i ∈ A given that P (Q) < r.

(d) {q | Q = Q
∗
+ 1; epg > P (Q)}. Any such q involves a m.s.e.. Any

q : qg > 1 is dismissed as in part (b) above. As to the remaining subset
{q∗∗}, note that ep∗∗i = r/2, hence πi(q∗∗) = ep∗∗i eq∗∗i − r < ep∗∗i − r < 0.

(e) {q | Q > Q∗+1; epg > P (Q)}. Any such q has a m.s.e.. In this region,
at any q : n = Q, it is πi(q) = epieqi − r < 0: in fact, eqi < qi = 1 and

10With Q = Q
∗−1, this would result in zero profits if the resulting subgame has a p.s.e..

Any such q is disposed of if, at zero profit, entering is strictly preferred to not entering.
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epi < r because epi = P (eqi+Pj 6=i qj) and
P
j 6=i qj ≥ Q

∗
+1. Turn now to any

q : qg > 1. If epg > P (Q− 1), then we can argue as in (b). If epg ≤ P (Q− 1),
then epg < r given that P (Q− 1) < r: along with eqg < qg, this reveals that
πg(q) = epgeqg − rqg < 0.

Proof of Lemma 5. At configurations such that Q < D(r) it would
pay any inactive firm to deviate to qu = 1. Remaining configurations are
partitioned according to whether Q = D(r) or Q > D(r).

(a) Configurations such that Q = D(r).
Let G = #{i : qi = qg}. Configurations such that Q = D(r) at the

equilibrium of the quantity subgame are immediately disposed of: any firm
g would profit from deviating to qg − 1, which would raise the market price
above r. So we turn to qs such that qg < qg.

11 Denote by l any of the next to
the largest firm(s). One possibility is that, at the equilibrium of the quantity
subgame, firms l too reach a capacity-unconstrained maximum in revenues:
then ql = qg ≤ ql ≤ qg−1. In such an event, firm g would clearly profit from
deviating to ql, which would just reduce its cost. Alternatively, it may be

that qj = qj for any j : qj < qg : then, as one can check, qg =
r+bGqg
b(1+G) . One

possible reason why such q cannot occur at an equilibrium of the entire game
is that it might pay any u to deviate to qu = 1. If u so deviates, then qg < qg
at the equilibrium of the new quantity subgame. Note, also, that n < n∗,
where n is the number of firms at q, with n = n∗ − 1 if and only if qg = 2
and G = 1. Therefore, at the new quantity subgame - where there are n+1
firms - an internal symmetric equilibrium obtains if and only if b > r and
n = n∗− 1. This being the case, u’s profit will be a2

b(n∗+1)2 − r > 0. In every
other circumstance, it will instead be qu = 1. Now, if at least firms l - along
with firms g - reach a capacity-unconstrained maximum in revenues at the
new subgame equilibrium, then, at this equilibrium, Q < D(r) given that
Q = D(r) and ql = qg ≤ qg−1 : firm u will earn the positive profit P (Q)−r.
The remaining case is when, after u’s deviation, qj = qj for any j : qj < qg.

In this case, qg =
r+bGqg−b
b(1+G) , P (Q) =

r+bGqg−b
1+G , and πu =

r+bGqg−b
1+G −r: hence

πu ≥ 0 so long as qg ≥ r
b +

1
G . If instead qg <

r
b +

1
G , then it can be seen that

it pays any g to deviate to qg − 1. Denote by q0 the capacity configuration
after g’s deviation to qg − 1 and by Q0, P (Q0), and πg(q

0), respectively, the
total quantity, market price, and g’s profit at the resulting equilibrium of
the quantity subgame. It must preliminarily be seen that all firms are now
producing their capacity given that qg <

r
b+

1
G . This is obvious as for any j :

11As can easily be checked, qg < qg when Q < Q at an equilibrium of the quantity
subgame.
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qj < qg, so we must prove that qr = qr for any r 6= g : qr = qg. Consistently
with our notation, let eqr denote firm r’s (capacity unconstrained) short-run
best quantity response when all the other firms are believed to produce their
capacity: eqr = r+bqg+b

2b ≥ qg if and only if qg ≤ (r/b) + 1, which in its turn
holds true given that qg <

r
b +

1
G . As Q

0 = D(r)−1, it will be P (Q0) = b+r.
Thus πg(q0) = bqg − b, which is higher than g’s initial profit (r+bGqg)

2

b(1+G)2 − rqg
if and only if

b(1 +G)2qg(b+ r)− b2(1 +G)2 − (r + bGqg)2 > 0. (8)

With qg = 2 and G ∈ {1, 2}, validity of (8) is established by substitution
and taking account of qg > r/b and qg < r/b + 1/G.12 For all remaining
cases, recall that b(1+G)qg > r+ bGqg, as qg < qg. Therefore, we would be
done by establishing the following, more restrictive inequality:

(r + bGqg)(1 +G)(b+ r)− b2(1 +G)2 − (r + bGqg)2 > 0. (9)

Letting h = r
b +

1
G − qg and recalling that qg =

r+bGqg
b(1+G) , ineq. (9) will lead to

qg >
1 +G

G(1 + h)
. (10)

Given that the right-hand side is less than 2 and qg > qg − 1, ineq. (10)
is certainly met if qg > 2. As to the remaining case of qg = 2 and G > 2,

qg =
r+2bG
b(1+G) >

1+G
G , given that qg = 2 <

r
b +

1
G .

(b) Configurations such that Q > D(r).
We can restrict ourselves to qs such that, at the equilibrium of the quan-

tity subgame, Q < D(r), qg − 1 < qg < qg and qj = qj for any j : qj < qg
(other configurations are dismissed by drawing on arguments made in part
(a)). It must preliminarily be seen that it is necessarily G > ∆, where
∆ = Q − D(r). In fact, at the qs under concern, Q =

P
j:qj<qg

qj +

Gqg=D(r) +∆−Gqg +Gqg>D(r) +∆−Gqg +G(qg − 1)=D(r) +∆−G,
hence it has to be G > ∆ in order for Q < D(r).

One possible reason why any such q is ruled out as an equilibrium is that
any inactive firm might profit from entering with qu = 1. Let n = J + G
denote the number of firms at q, where J = #{j : qj < qg}. It should
be understood that, at the configurations under concern, n ≤ n∗ − 1, with
12 Inequality qg > r/b follows from the fact that, at the equilibrium of the quantity

subgame at q, qg < qg and qj = qj for any j : qj < qg.
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n = n∗ − 1 when ∆ = G − 1 and qg = 2.13 Thus the subgame originating
from u’s deviation has an internal equilibrium if and only if b > r and
n = n∗ − 1, in which case u’s profit will be a2

b(n∗+1)2 − r > 0, just as when
Q = D(r). If not, it will be qu = 1. Then there are two possibilities,
similarly to when Q = D(r). It may be that, besides firms g, firms l also
reach a capacity-unconstrained maximum in revenues at the new subgame
equilibrium. Then total output will be not higher than D(r) and firm u will
thus earn nonnegative profits.14 Or it may be that, at the new subgame
equilibrium, qj = qj for any j : qj < qg. Then qg =

r−b∆+bGqg−b
b(1+G) , the price

is
r−b∆+bGqg−b

1+G and firm u earns
r−b∆+bGqg−b

1+G − r. Thus it pays u to enter so
long as qg ≥ r

b +
1
G +

∆
G .

If instead qg <
r
b +

1
G +

∆
G , how can q be dismissed as an equilibrium?

By showing that, in such a case, any g makes a loss at q:

πg(q) =
(r − b∆+ bGqg)2

b(1 +G)2
− rqg < 0. (11)

In fact, we can establish this inequality even when

qg =
r

b
+
1

G
+
∆

G
, (12)

that is, when u makes zero profits if deviating to qu = 1. Making use of
(12), our desired inequality (11) turns out to amount to r(1+G)[G(1−∆)−
∆−1]+ bG < 0, hence to (bqg− b∆

G − b
G)(1+G)[G(1−∆)−∆−1]+bG < 0.

Since the left-hand side is decreasing in qg, it suffices to prove this inequality
for qg = 2, when it becomes

G2 < (2G−∆− 1)(1 +G)[∆+ 1 +G(∆− 1)]. (13)

Validity of (13) is immediate once it is recalled that 1 ≤ ∆ < G: then, on
the right-hand side, (2G−∆− 1)(1+G) > G2 and ∆+1+G(∆− 1) > 1.

13For any given G, one requisite for maximal J is that qj = 1 for any j : qj < qg, in
which case J = D(r)+∆−Gqg = n∗+∆−Gqg. This in its turn is maximal when qg = 2
and ∆ = G− 1 (given the constraint that G > ∆), resulting in J = n∗− 1−G. Therefore,
maximal n equals n∗ − 1.
14Note that, at q, total equilibrium output is

P
j:qj<ql

qj + Lql + Gqg < D(r), where
L = #{i : qi = ql}. Therefore,

P
j:qj<ql

qj + (L + G)ql ≤ D(r) − 1 given that ql < qg
and capacities are integers. Consequently, total output at the new subgame equilibrium
is
P

j:qj<ql
qj + 1 + (L+G)ql ≤ D(r) since ql ≤ ql.
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B. Allowing for noninteger D(r)

B.1. An alternative “competitive” benchmark

As already seen, a long-run competitive equilibrium - based on the
assumption of price-taking entrants - does not exist when D(r) /∈ F+.
In any such case, let us redefine the “competitive” capacity Q

∗
as the

largest capacity consistent with nonnegative profits under market-clearing
and the “competitive” price p∗ as the corresponding market-clearing price:
Q
∗
= (D(r)− 1,D(r)] ∩ F+ and p∗ = P (Q∗). A justification for this termi-

nology can be provided in terms of a two-stage capacity and quantity game
with a competitive output market. In such a game, potential entrants choose
capacities at stage 1, whereas, at stage 2, active firms choose quantities while
taking the market price as given (its being set by an auctioneer equating
demand and total supply). Note that, in this setting, while active firms are
price takers, potential entrants do recognize how their capacity decisions
are going to affect stage-2 market-clearing price. (See Dixon, 1985, where
investment decisions by entrants are studied in a similar setting.) We refer
to any subgame-perfect equilibrium outcome of such a game as a “long-run
equilibrium with competitive pricing” (LRECP).

Let δ = D(r) − Q∗ < 1. Note that Q∗ ∈ (a−r−bb , a−rb ] and p
∗ = r + bδ.

Now we are able to characterize any LRECP.

Proposition 4 At an LRECP, the industry configuration is any q∗, result-
ing in price p∗.

Proof. At q∗ the market-clearing price is p∗. Any potential entrant has
made a best response: a deviation to qi > 1 by any i ∈ A∗ or to qu > 0 by
any u /∈ A∗ would yield losses at the new market-clearing price. In contrast,
no q /∈ {q∗} can occur at an LRECP. At q : Q ≤ Q∗ − 1, it pays any u /∈ A
to deviate to qu = 1.

15 At q : Q > Q
∗
, πwi (q) < 0 for any i ∈ A. Thus we are

left with q : n < Q = Q
∗
. Then it always pays g to deviate to qg − 1. This

is immediate when D(r) ∈ F+, since then πwg (q) = 0. With D(r) /∈ F+, it
is still πwg (qg − 1, q−g) > πwg (q). This can be seen using eq. (7) and the fact

that qg−1 is closer to q†g = qg+δ

2 than qg is: if qg > 2, then q
†
g < qg−1 < qg;

if qg = 2, then q
†
g − (qg − 1) = 0.5δ < qg − q†g = 1− 0.5δ.

15 If D(r) ∈ F+, then any q : Q = Q∗ − 1 is disposed of by our assumption that entry is
strictly preferred to not entering.
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To sum up, at each LRECP active firms have the minimum efficient size
and total output is the largest one yielding nonnegative profits under market
clearing.16

B.2. The capacity and price game

Now we turn to the capacity and price game. Recall thatQ
∗ ∈ (a−r−bb , a−rb ]

and p∗ = r+ bδ ∈ [r, r+b); furthermore, ep∗i = r+b+b∆
2 ∈ [ r+b2 , r+2b2 ). In what

follows, we will confine ourselves to capacity configurations inside Q∗ ∪Q∗∗:
in fact, configurations outside this set cannot occur at an equilibrium of the
capacity and price game.17

Similarly to when D(r) ∈ F+, inequality b ≤ r guarantees the emergence
of p∗ at an equilibrium of the capacity and price game.

Lemma 6. If b ≤ r, then at an equilibrium of the capacity and price
game the capacity configuration is any q∗ and prices are set at p∗ on the
equilibrium path.

Proof. A p.s.e. for the price subgame arises at q∗ if and only if δ ≥ b−r
b ,

which certainly holds true when b ≤ r. At q∗ any firm has made a best
capacity response. As to any i ∈ A∗, if ep∗i ≤ P (Q∗+1) the argument runs as
with D(r) ∈ F+. If ep∗i > P (Q∗+1), then a m.s.e. for the price subgame will
obtain if i deviates to qi > 1, resulting in πi(qi, q

∗
−i) = πwi (eq∗i , q∗−i)−r(qi−eq∗i ).

Even πwi (eq∗i , q∗−i) < πi(q
∗): this can be checked using eq. (7) and the fact

that q†i < 1 = q
∗
i . As to any u /∈ A∗, entering would lead to losses. Suppose

u deviates to qu = 1 and a m.s.e. obtains for the price subgame (otherwise
our case is trivial), which is so if and only if δ < 2b−r

b . Then u’s profit reads
πi(q

∗∗) = ep∗∗i eq∗∗i − r, where eq∗∗i < 1 and ep∗∗i = r+bδ
2 < r since b ≤ r.

On the other hand, unlike with D(r) ∈ F+, inequality b ≤ r may not be
necessary for the emergence of p∗ at an equilibrium of the capacity and price
game. To see why, note that, as δ → 1, ep∗i → r+2b

2 while p∗ → r + b > r+2b
2 .

Thus, ep∗i ≤ p∗ for δ sufficiently close to 1: at q∗ the price subgame may
have a p.s.e., even when b > r. With this insight, we can now address full
equilibrium characterization.

Proposition 5 At an equilibrium of the capacity and price game: (i) If
b ≤ r or b > r and b−r

b ≤ δ < 2
√
br−r
b , then the capacity configuration

16Noteworthy, this is how the long-run competitive equilibrium is actually defined in
microeconomic textbooks such as Varian (1984, pp. 85-90).
17The proof of this claim is omitted, for brevity.
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is any q∗ and prices are set at p∗ on the equilibrium path; (ii) if b > r

and δ < min{ b−rb , 2
√
br−r
b }, then the capacity configuration is any q∗ and a

m.s.e. for the price subgame obtains on the equilibrium path; (iii) if b > r
and δ ≥ 2

√
br−r
b , then the capacity configuration is any q∗∗ and a m.s.e.

obtains for the price subgame on the equilibrium path.

Proof. (i) A p.s.e. obtains at q∗ given that b−r
b ≤ δ. At q∗ any firm

has made a best capacity response: in particular, if any u /∈ A∗ deviates to
qu = 1 and a m.s.e. obtains for the price subgame, then u’s expected revenue
reads Πi(q∗∗) = ep∗∗i eq∗∗i = (r+bδ)2

4b : this is less than r because δ < 2
√
br−r
b .

(ii) A m.s.e. obtains at q∗. It might easily be seen that best capacity
responses have been made at stage 1.

(iii) Inequality b > r guarantees that a m.s.e. obtains at q∗∗; further-
more, πi(q∗∗) ≥ 0 since δ ≥ 2

√
br−r
b . Each firm has made a best capacity

response. In particular, should any u /∈ A∗∗ deviate to qu = 1, then the
industry configuration would become q∗∗∗ : n∗∗∗ = Q∗∗∗ ≡ Q∗ + 2. Firm u’s
expected profit would be πi(q∗∗∗) = ep∗∗∗i eq∗∗∗i − r < 0 because eq∗∗∗i < 1 andep∗∗∗i = r+bδ−b

2 < r. On the other hand, configurations q∗ cannot arise at an
equilibrium: any u /∈ A∗ would earn πi(q

∗∗) ≥ 0 by deviating to qu = 1.

B.3. The capacity and quantity game

Equilibria of the capacity and quantity game will be searched in the
region {q | n = Q} of the space of capacity configurations. By so doing we
will actually discover any equilibrium so long as Lemma 5 extends to the
case of D(r) /∈ F+ (something we do not attempt to prove).

As in the capacity and price game, inequality b ≤ r guarantees the
emergence of p∗ at an equilibrium of the capacity and quantity game.

Lemma 7. If b ≤ r, then at an equilibrium of the capacity and quantity
game the capacity configuration is any q∗ and the firms produce their capacity
on the equilibrium path, which results in market price p∗.

Proof. Inequality b ≤ r is sufficient for a boundary solution to obtain
for the quantity subgame at q∗. Any firm has made a best capacity response.
As to any i ∈ A∗, let k be the integer such that k− 1 < eq∗i ≤ k. If deviating
to qi = k, then, at the equilibrium of the new quantity subgame, qi = eq∗i
and qj = q∗j = 1 for any j 6= i ∈ A∗. Suppose first k ≥ 3 so that eq∗i > 2.

Then losses are made because Q =
P
j 6=i q

∗
j + eq∗i = a−r

b − δ − 1 + eq∗i > D(r)
and hence P (Q) < r. Losses are also made if deviating to qi ∈ {2, ..., k− 1},
in which case qi = qi and qj = 1 for any j 6= i ∈ A∗, again resulting in
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Q > D(r). With k = 2, deviating to qi = 2 leads to qi = eq∗i and qj = 1 for
any j 6= i ∈ A∗. This affords the deviant a profit of πwi (eq∗i , q∗−i)− r(qi− eq∗i ):
and, since eq∗i > 1 > q†i , even πwi (eq∗i , q∗−i) < πwi (q

∗). Turn now to any u /∈ A∗
and suppose it deviates to qu = 1. The quantity subgame has an internal
equilibrium (the case of a boundary equilibrium is trivial) if δ < (2b− r)/b:
but then, as one can easily check, Q = an∗∗

b(n∗∗+1) >
a−r
b , hence P (Q) < r.

Again similarly to the capacity and price game, inequality b ≤ r may
not be needed for the emergence of p∗ at an equilibrium of the capacity and
quantity game.

Proposition 6 At an equilibrium of the capacity and quantity game: (i) If

b ≤ r or b > r and b−r
b ≤ δ <

a+2b−r−a
√
b/r

b , then the capacity configuration
is any q∗ and the firms produce their capacity on the equilibrium path, result-

ing in market price p∗; (ii) if b > r and δ ≥ a+2b−r−a
√
b/r

b , then the capacity

configuration is any q§ such that n§ = Q§ and n§ ≤ −1+ a
√
br
br < n§+1, and

the firms produce below capacity on the equilibrium path.

Proof. (i) In view of Lemma 7, we only need to deal with the b > r case
As b−rb ≤ δ, a boundary solution obtains at q∗. Any firm has made a best
capacity response. In particular, by deviating to qu = 1, any u /∈ A∗ would
earn revenue Πi(q∗∗) = a2

b(n∗∗+1)2 =
a2b

(a+2b−r−bδ)2 : this is less than r given

that δ <
a+2b−r−a

√
b/r

b . This also allows us to dispose of any q : n = Q > Q
∗
.

(ii) At q§, Πi = a2

b(n§+1)2 ≥ r for each i ∈ A§. Any firm has made a best

capacity response. As to any i ∈ A§, raising capacity would just raise costs;
as to any u /∈ A§, entering would lead to losses. Configurations q such that
n = Q > Q

§
are immediately disposed of, since πi(q) < 0.

B.4. Examples and discussion

Examples. 1. We begin illustrating the case where the “competitive”
outcome obtains in either game. Let a = 12, r = 1.2, and b = 1.25, so
that D(r) = 8.64, Q

∗
= 8, and p∗ = 2. Note that b−r

b ≤ δ < min{2
√
br−r
b ,

a+2b−r−a
√
b/r

b }. Then, in either game, the equilibrium capacity configuration
is any q∗ and, on the equilibrium path: prices are set at p∗ at the equilibrium
of the price subgame; the firms produce their capacity at the equilibrium of
the quantity subgame, which results in market price p∗.

2. We now illustrate the possibility of equilibrium total capacity being
higher than Q

∗
at either game. Let a = 12, r = 1.2, and b = 2.75, so
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that D(r) = 1080
275 , Q

∗
= 3, δ = 255

275 , and p
∗ = 3.75. Now, b > r and

δ ≥ 2
√
br−r
b . Thus, at any equilibrium of the capacity and price game there

are n∗∗ = 4 firms, each with one unit of capacity: on the equilibrium path
a m.s.e. is played for the price subgame, resulting in πi(q

∗∗) = ep∗∗i eq∗∗i − r =
1.875× 1.875

2.75 − 1.2 ∼= .078. As to the capacity and quantity game, since δ ≥
a+2b−r−a

√
b/r

b , at any equilibrium there are n§ = 5 active firms, each with
one unit of capacity. On the equilibrium path every active firm produces

a
b(n§+1) =

24
33 , resulting in P (Q

§) = 2 and πi(q
§) = 2× 24

33 − 1.2 ≈ 0.2545.
3. Finally, we illustrate the possibility of the “competitive” outcome

emerging in the capacity and price game but not in the capacity and quantity
game. Let a = 13, r = 0.4, and b = 1, so that D(r) = 12.6, Q

∗
= 12, and

p∗ = 1. It is b−r
b ≤ δ < 2

√
br−r
b , hence at any equilibrium of the capacity

and price game there are n = 12 active firms, each one charging p∗ = 1. On

the other hand, b > r and δ ≥ a+2b−r−a
√
b/r

b . Therefore, at any equilibrium
of the capacity and quantity game there are n§ = 19 active firms, each
with one unit of capacity and producing a

b(n§+1) = 0.65; the market price is

P (Q§) = 0.65 and πi(q
§) = 0.652 − 0.4 = 0.0225. ¦

The theoretical possibility illustrated by the last example above deserves
further consideration. One requisite for the emergence of p∗ at an equilib-
rium of the capacity and price game is that, at q∗, it does not pay any
u /∈ A∗ to enter. It might be so even if, at q∗∗ - the configuration actually
in place if u deviates to qu = 1 -, the price subgame had a m.s.e., providedep∗∗i eq∗∗i < r. Turn now to the capacity and quantity game. Note that, at
q∗∗, equilibrium revenue is a2

b(n∗∗+1) > ep∗∗i eq∗∗i : in fact, ep∗∗i eq∗∗i is the revenue
of the Stackelberg follower when each rival is supplying its unitary capacity,
whereas a2

b(n∗∗+1) is the revenue of the Stackelberg follower when each rival

is supplying a
b(n∗∗+1) < 1. Thus, it may be ep∗∗i eq∗∗i < r < a2

b(n∗∗+1) : in such
a case, q∗ is an equilibrium of the capacity and price game but not of the
capacity and quantity game because, in the latter, at q∗ it pays any u /∈ A∗
to deviate to qu = 1.

C. A static capacity and quantity game

In terms of choice variables, any equilibrium outcome of the two-stage ca-
pacity and quantity game is a “capacity and output configuration”, namely,
a z−component vector of capacity and output pairs ((q1, q1), ..., (qz, qz)).
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It is easy to prove that any (subgame-perfect) equilibrium outcome of the
two-stage capacity and quantity game is an equilibrium of the static game.
Consider any firm i such that (qi, qi) > (0, 0). Over the range [0, qi], qi is
clearly a best response to the rivals’ output. Also, it does not pay any firm i
(no matter whether (qi, qi) > (0, 0) or (qi, qi) = (0, 0)) to deviate to a higher
capacity and then eventually adjust output: such a move is unprofitable in
the two-stage setting, where the rivals’ output at the equilibrium of the
quantity subgame is nonincreasing in i’s capacity; therefore, since outputs
are strategic substitutes, prospects are even worse in the static game, where
the rivals’ output is taken as given.

On the other hand, the static game may have Nash equilibria that are
not (subgame-perfect) equilibria of the two-stage game. Let b > a2b/(a +
2b − r)2 ≥ r, as in part (ii.b) of Proposition 2. We already know that any
q§ coupled with qi = a

b(n§+1) for each i ∈ A§ is an equilibrium of the static
game. Further equilibria are identified as follows. Consider any capacity
and output configuration with n active firms - where n∗ ≤ n < n§ - and qi =
a

b(n+1) < qi = 1 for any i ∈ A. Clearly any i ∈ A has made a best response.
Therefore, for any such configuration to be an equilibrium it must be that
any u /∈ A has also made a best response. Note that the best deviation u can
make is the capacity-output pair (qu = 1, qu =

a
2b(n+1)), where

a
2b(n+1) < 1

is u’s best output response (with qu > 0) to the rivals’ total output. This
results in Πu = a2

4b(n+1)2
, which is less than r if and only if n > −1 + a

√
br

2br .

Thus we have this result: if b > a2b
(a+2b−r)2 ≥ r, then any capacity and output

configuration with n ∈ (max{n∗,−1 + a
√
br

2br },−1 + a
√
br
br ] active firms and

qi =
a

b(n+1) < qi = 1 for any i ∈ A constitutes an equilibrium. Applying
this result to Example 3 on p. 11, it can be checked that any capacity and
output configuration with n ∈ (8, 11] active firms, each with qi = 1 and
producing qi = 17

2(n+1) is an equilibrium of the capacity and quantity game.
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